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Metagenomic sequencing increased our understanding of the role of the microbiome
in health and disease, yet it only provides a snapshot of a highly dynamic ecosystem.
Here, we show that the pattern of metagenomic sequencing read coverage for different
microbial genomes contains a single trough and a single peak, the latter coinciding with the
bacterial origin of replication. Furthermore, the ratio of sequencing coverage between the
peak and trough provides a quantitative measure of a species’ growth rate. We demonstrate
this in vitro and in vivo, under different growth conditions, and in complex bacterial
communities. For several bacterial species, peak-to-trough coverage ratios, but not relative
abundances, correlated with the manifestation of inflammatory bowel disease and
type II diabetes.

C
haracterization ofmicrobiome composition
and function through shotgun sequencing
has providedmany insights into its roles in
health and disease. Gene calling (1, 2), func-
tional/pathway analysis (3–6), metagenomic-

wide association studies (7, 8), genome assembly
(9, 10), and metagenomic single-nucleotide poly-
morphism (SNP) detection (11) have all shown
associations betweenmicrobiome configurations
and susceptibility to several diseases, including obe-
sity (4, 12), type II diabetes (7), auto-inflammatory
disorders (1, 13), metabolic disease (12, 14), and
cancer (15, 16). However, these approaches, which
only examine a static snapshot of the microbiome
at the point of collection, cannot be used to ob-
serve the highly dynamic nature of the micro-
biota and the differential activity of its microbial
members.
Here, we asked whether microbiota growth

dynamics could be probed from a single meta-
genomic sample by examining the pattern of se-
quencing read coverage across bacterial genomes.
Apart from a few examples (17), most bacteria
harbor a single circular chromosome, which repli-
cates bidirectionally from a single fixed origin to-
ward a single terminus (18) (Fig. 1A). Thus, during
DNA replication, regions that have already been

passed by the replication fork will have two
copies, whereas the yet unreplicated regions will
have a single copy.
This concept was previously used to detect the

location of the replication origin in synchronized
yeast colonies (19) but also holds true in an asyn-
chronous bacterial population in which every
cell may be at a different stage of replication.
Summed across the population, the copy number
of a DNA region will be higher the closer that
region is to the replication origin and, converse-
ly, lower the closer that region is to the terminus
(20, 21). Hence, the ratio betweenDNA copy num-
ber near the replication origin and that near the
terminus, which we term peak-to-trough ratio
(PTR), should reflect the growth rate of the
bacterial population. At higher growth rates, a
larger fraction of cells undergo DNA replication
and more active replication forks are present in
each cell (22). This results in a ratio higher than
1:1 between near-origin DNA and near-terminus
DNA, thereby providing a quantitative readout
of the population growth rate (21).
We grew in vitro cultures of Escherichia coli

(K-12 strain) and sequenced them at multiple
time points during late lag phase, exponential
phase, and early stationary phase (23). During
stationary phase, when most of the cells in the
culture are not growing and thus have a single
copy of their genome, we found uniform cover-
age across the genome (Fig. 1, A to C). In contrast,
during exponential growth, when each bacte-
rial cell may be at a different stage of DNA
replication, the coverage pattern exhibited a
single trough and a single peak, and the peak
coincided with the known (24) replication origin
(Fig. 1, A to C).
Similar patterns to those seen in vitro were

also found for E. coli in 583 publicly available
(3, 7, 9) humanmetagenomic fecal samples (Fig. 1B).

PTRs extracted from these samples varied across
individuals, in the range of 1 to 2.4, resembling
the 1 to 2.6 range of ratios measured in vitro
(Fig. 1B). Ratios higher than 2 are indicative of
multifork replication, previously documented
for E. coli (18, 22).
To examine whether PTRs provide a quantita-

tive measure of growth rate, we calculated the
temporal growth rate of E. coli at different times
during its growth experiment as the derivative of
its abundance across time (23). PTRs were cor-
related with the measured growth rate, preced-
ing it by 30 min (R = 0.95, P < 10−4) (Fig. 1D),
indicating that PTR predicts the change in abun-
dance. To determine whether PTRs accurately
reflect steady-state growth rates (as opposed to
temporal growth), we grew E. coli in an aerobic
chemostat in which steady growth rates were
controlled by changing the dilution rate of the
system to induce a 16-fold range (23) and found
excellent correlation (R = 0.996, P < 0.001) (fig.
S1A) between the calculated PTRs and the mea-
sured growth rates. According to theoretical mod-
els (21), PTR = 2C/G, where C is the replication
time (C-period), and G is the generation time,
and thus 1/log2(PTR) is proportional to G/C. This
transformation was correlated with measured
bacterial generation time (R = 0.96, P < 0.01) (fig.
S1B), confirming PTR as its proxy, even when the
replication time is unknown.
The relationship between PTR and growth

rate extends to other commensal strains, as we
found that PTR and temporal measured growth
rate were significantly correlated in similar cell
growth experiments performed on Lactobacillus
gasseri and Enterococcus faecalis under anaerobic
conditions (L. gasseri,R=0.74,P<0.001;E. faecalis,
R = 0.57, P < 0.05) (fig. S2, A and B). PTR also
detects changes in growth rate mediated by
changes in growth conditions, as PTRs and mea-
sured growth rate were correlated in additional
cell growth experiments performed on E. faecalis
in aerobic conditions and on E. coli in restricted
growth conditions (23) (E. coli,R=0.92,P<0.001;
E. faecalis, R = 0.78, P < 10−4) (fig. S2, C and D).
L. gasseri exhibited no growth in aerobic con-
ditions, and accordingly we observed no change
in PTRs (fig. S2E). PTRs for L. gasseri and E.
faecaliswere significantly different between aer-
obic and anaerobic conditions (E. faecalis, P <
0.05; L. gasseri, P < 0.001, Mann-WhitneyU test)
(fig. S2E).
To examine whether PTRs can be used to

detect clinically relevant changes in culture con-
ditions, we treated an in vitro culture of early log-
phase nalidixic acid-resistant Citrobacter rodentium
with the bacteriostatic antibiotic erythromycin.
Because bacteriostatic antibiotics halt bacterial
growth, and thus indirectly inhibit replication, we
postulated that erythromycin treatment would
decrease PTRs. As a control, cultures were treated
with nalidixic acid, with the bactericidal antibiotic
kanamycin, or left untreated. Indeed, erythromycin
treatment lowered the PTR comparedwith controls
(Mann-Whitney P < 0.001 and P < 10−4 for un-
treated control or nalidixic acid treated control,
respectively) (Fig. 2, A and B). PTR reduction

SCIENCE sciencemag.org 4 SEPTEMBER 2015 • VOL 349 ISSUE 6252 1101

1Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel. 2Department of
Molecular Cell Biology, Weizmann Institute of Science, Rehovot,
Israel. 3Immunology Department, Weizmann Institute of
Science, Rehovot, Israel. 4Department of Biological services,
Weizmann Institute of Science, Rehovot, Israel. 5Department of
Veterinary Resources, Weizmann Institute of Science, Rehovot,
Israel. 6Center for Computational and Integrative Biology,
Massachusetts General Hospital, Harvard Medical School and
Broad Institute, Cambridge, MA, USA. 7Department of Molecular
Genetics, Weizmann Institute of Science, Rehovot, Israel.
*These authors contributed equally to this work. †Corresponding
authors. E-mail: eran.elinav@weizmann.ac.il (E.E.); eran.segal@
weizmann.ac.il (E.S.)

RESEARCH | REPORTS
on June 20, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


under erythromycin was evident within 30 min
after administration and preceded the halt in
exponential growth that was detected only 60 min
after erythromycin treatment (Fig. 2, A to C).
During antibiotic recovery, obtained by wash-
ing the cultures after 2.5 hours and removing the
antibiotics (23), PTRs increased, consistent with
the rise in abundance (Mann-Whitney P < 0.001)
(Fig. 2, A and B).
Next, we grew L. gasseriwithin amixture of six

commensal bacterial strains (23) and observed a
rise in its PTR corresponding with the rise in
abundance, with PTR and temporal growth being
correlated (R = 0.64, P < 0.001) (Fig. 2D).

Together, the in vitro experiments show that
PTRs precede and predict changes in abundance
even in the more complex setting of a mixed bac-
terial community, thereby establishing the link
between PTRs and growth rate.
To investigate whether PTRs remained accu-

rate predictors of bacterial activity in a disease
setting, we compared the proliferative behavior
of virulent and nonvirulent (tir-mutant) strains
of C. rodentium, whichwe used to infect C57BL/6
mice previously depleted of their native micro-
biota by wide-spectrum antibiotic treatment
(23). We compared the in vivo abundance of
both strains with PTRs and found that both

showed similar behaviors 1 to 5 days post-
infection (p.i.), with counts steadily rising from
~104 to 105 CFU/ml at day 1 to ~108 CFU/ml by
day 5 (fig. S3). However, at 6 to 9 days p.i., the
virulent strain displayed significantly higher
counts (Mann-Whitney P < 0.05) (fig. S3) and
PTRs (Mann-Whitney P < 0.001) (Fig. 3A) than
the nonvirulent strain, likely reflecting prefer-
ential mucosal adhesion and proliferation (25).
Whereas PTRs of the virulent strain were higher
at days 6 to 9 p.i. compared with days 1 to 5 p.i.
(Mann-Whitney P < 0.001) (Fig. 3A), PTRs of the
nonvirulent strain 6 to 9 days p.i. were even lower
than those of in vitro cultures of C. rodentium
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Fig. 1. PTR accurately measures in vitro growth rates of E. coli. (A) Se-
quenced reads aremapped to complete bacterial genomes, and the sequencing
coverage across the genome is plotted. Each bacteria cell in a growing pop-
ulation (top) will be at a different stage of DNA replication, generating a coverage
pattern that peaks near the known replication origin (green vertical line in graph),
and thus produces a prototypical sequencing coverage pattern with a single
peak and a single trough. Bacteria from a nondividing population (bottom) have
a single copy of the genome, producing a flat sequencing coverage pattern
across the genome. (B) (Top) Sequencing coverage patterns of a nonreplicating
(left) and actively replicating (right) E. coli from two human gut metagenomic

samples. (Bottom)Distribution of PTRs ofE. coli across 583 different human gut
metagenomic samples (3, 7, 9) (histogram) and 58 in vitro samples from four
growth experiments (box plot). (C) Genome coverage plots of E. coli, measured
at different times during an in vitro cell growth experiment, showing that PTRs
are highest during exponential growth (time points 1 to 2.5) and lowest in lag
(time point 0) and stationary (time points 3 to 7) phases. (D) PTRs (red line)
correlate (R = 0.95, P < 10−4) with the growth rate (black line), measured as the
derivative of the logged abundance curve [abundance is measured as optical
density of the culture (OD); blue line] in the subsequent 30 min (23). N = 2
repeats. Symbols, mean; error bars, mean T SEM.
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in stationary phase (Mann-Whitney P < 0.001)
(Fig. 3A).
To explore the utility of the PTR measure

within the complex metagenomic setting, we de-
vised a computational pipeline that extracts
PTRs for multiple samples within large meta-
genomic cohorts (supplementary text and fig.
S4). In devising this pipeline, we took care to
address (i) genomic differences between strains
of a certain species; (ii) copy number variation of
different genomic regions, and (iii) variable cov-
erage levels stemming from sequencing depth.
We show that our method is robust to these
drivers of noise (fig. S5 to S8 and supplementary
text), attributed to our examination of coverage
across the entire genome, as opposed to compar-
ing the coverage of origin and terminus regions
directly.
Examining the full length of the genome also

allows us to predict the replication origin loca-
tion in different bacteria. We verified that cov-
erage peak locations coincided with known
locations of origins of replication. To this end,
we applied our pipeline to 759 metagenomic
stool samples from Chinese and European co-
horts (7, 9) and predicted the location of the
origin and terminus of replication for 187 dif-
ferent microbial strains. Indeed, these predic-
tions, computed solely based on our analysis of
the bacterial genome coverage patterns, agreed
with the known replication origins of 132 dif-
ferent strains (24) (R2 = 0.98, P < 10−30) (fig. S8),

and for 55 strains whose replication origin lo-
cation is unknown our method generated novel
predictions (fig. S9).
To determine whether PTRs can uncover a

possible interplay between host genetics and gut
microbiome growth dynamics we collected fecal
samples from threemouse strains (SwissWebster,
BALB/c, and C57BL/6) (23) grown under identical
environmental conditions.Microbiota growth dy-
namics, as estimated by PTRs, differed significant-
ly across the different mouse strains. In BALB/c
mice, PTRs were lower overall compared with
C57BL/6 and Swiss Webster mice (P < 0.05) (fig.
S10A). The reduction in growth in the BALB/c
mice was driven by Parabacteroides distasonis,
which displayed consistently lower PTR than in
other mouse strains (fig. S10, B to D), indicating
that host genetics may affect the growth dynam-
ics of this bacterium.
Another example of the utility of PTRs in as-

sessing physiological microbiome growth pat-
terns is provided inmicrobiome diurnal oscillation
patterns, which we recently linked to host sus-
ceptibility to obesity and glucose intolerance
(26). Examining PTRs of fecal microbiomes col-
lected from a human volunteer every 6 hours for
four consecutive days, we identified two species,
out of four that passed our PTR pipeline fil-
ters, that showed abundance levels cycling
with a 24-hour periodicity (23). For both spe-
cies, the PTRs also exhibited 24-hour oscillato-
ry patterns (P < 0.05) (23) (Fig. 3B and fig. S11),

suggesting that diurnal changes in the abun-
dance of some bacteria were reflected in their
PTRs.
To investigate the effect of an extreme dietary

change on bacterial growth rates, two healthy
human volunteers underwent an acute dietary
change, in which they shifted their normal diet
to one that contained only boiled white rice for
1 week, after which they reverted back to their
regular dietary habits. In both participants, we
observed a global change in gut bacterial growth
dynamics between dietary regimens, as reflected
in statistically significant differences in the PTRs
of all bacteria between the days inwhich ricewas
consumed and the days in which the partic-
ipant’s regular diet was followed (P < 0.005 for
each participant) (Fig. 3, C and D).
We also examined body site–specific microbial

growth rates in a metagenomic cohort (3) and
found significantly higher PTRs in 229 tongue
dorsum (1.36 ± 0.006) and 193 buccal mucosa
(1.37 ± 0.007) samples, as compared with 325
stool samples (1.16 ± 0.002; P < 10–50 in both
cases) (fig. S12A). Six species were present in
both the oral cavity and stool with sufficient
coverage to calculate PTRs, with three featuring
significantly different PTRs between sites [false
discovery rate (FDR)–corrected Mann-Whitney
P < 0.1] (fig. S12, B toG), indicating that intersite
differences stemnot only from distinct bacterial
compositions but also from site-specific differ-
ences in growth dynamics.
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Fig. 2. PTR accurately measures in vitro growth rates in multiple conditions. (A to C) Absolute abundance levels
[colony-forming units per ml (CFU/ml)] (top y axis, blue) and PTR (bottom y axis, red) as a function of time (minutes)
of an in vitro culture of C. rodentium treated with erythromycin (bacteriostatic antibiotic in this setting; N = 2 repeats),
compared to those of (A) an untreated control culture (N = 3 repeats); (B) a culture treated with nalidixic acid, a drug to which C. rodentium is resistant (N = 3
repeats); and (C) a culture treated with kanamycin, a bactericidal drug in this setting (N = 3 repeats). Background color indicates the treatment period (dark
gray, left), recovery period (gray, middle), and early stationary phase (light gray, right).The black vertical line denotes antibiotic washout. PTR changes precede
changes in growth. P values are Mann-Whitney U test between abundance (top) or PTR (bottom) of the two different cultures at times 30 to 150 min (left) or
times 210 to 300 min (right). (D) Bacterial abundances (CFU/ml; top) and PTR (bottom) of L. gasseri and a mixture of six additional bacterial strains that
inhabit the human gut. N = 4 repeats. Symbols, mean; error bars, mean T SEM.
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Overall, these results provide examples of
functional insights that are not achievable using
traditional metagenomics analysis methods
and indicate that microbiome growth dynamics
vary across diverse physiological conditions and
locations.
To determine whether bacterial PTRs are as-

sociated with disease and different clinical pa-
rameters, we generated PTRs for every species in
samples fromEuropean (N= 396) (9) andChinese
(N = 363) (7) cohorts. In both data sets, we found
large variation in PTRs across samples (Fig. 4).
Notably, we found statistically significant associ-
ations between the PTRs of 20 different bacteria
andmultiple clinical parameters, including signif-
icant correlations between the PTR of Bifidobacte-

rium longum and occurrence of Crohn’s disease
in the Spanishnationals of theEuropean cohort (9)
(FDR-corrected Mann-Whitney P < 0.005), and
between the PTRs of 12 different bacteria and
the occurrence of type II diabetes in the Chinese
cohort (Fig. 4) (7). We also found significant cor-
relations between PTRs and the occurrence of
ulcerative colitis, body-mass index, the fraction
of glycatedhemoglobin (HbA1c%, a commonmark-
er of long-term glycemic control) (27), fasting
serum insulin, and fasting blood glucose levels
(Fig. 4).
These associations are independent of—and

unobtainable by examining—bacterial abundances,
because (i) in correlating PTRs with clinical pa-
rameters, we only used samples in which that

bacteria was present, thereby withholding in-
formation about the presence or absence of the
examined bacteria (23); (ii) in only 5 of the 38
statistically significant correlations were the
abundance levels of the species also correlated
with the same clinical parameter; and (iii) 36 of
the 38 significant associations of PTR remained
significant after correcting them for relative
abundance levels. The PTRs of some species
were correlated with clinical parameters only
after correction for relative abundance, includ-
ing Eubacterium rectale and the occurrence of
Crohn’s disease (FDR-corrected Mann-Whitney
P < 10–4).
As a global measure of the growth dynamics

of the entire microbiota, for every sample we
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Fig. 3. PTRs reflect the growth dynamics
of in vivomicrobial communities. (A) Shown
are PTRs of virulent [icc169; wild-type (WT);
N = 3 mice] and nonvirulent (tir mutant; N = 3 mice) C. rodentium 1 to 5 or 6
to 9 days p.i. of C57BL/6 mice previously depleted of their native microbiota.
PTRs of stationary and exponential in vitro C. rodentium cultures are shown for
reference. P values are Mann-Whitney U test. See fig. S3 for the corresponding
measured abundances. (B) Relative abundance (left y axis, blue) and PTRs
(right y axis, red) of Parabacteroides distasonis from fecal metagenomic
samples obtained approximately every 6 hours from one human individual on
4 consecutive days (26). Plotted lines are spline interpolations using the

displayed data points. Time is with respect to light cycles (Zeitgeber time,
horizontal axis). P value is for 24-hour oscillations (23). (C and D) Shown
are standardized PTRs (top graphs, mean T SEM) and specific PTRs for
species present in the sample (bottom heat maps), belonging to two human
subjects that underwent a radical dietary change. Compared are days in which
only white boiled rice was consumed (gray area) and days of normal diet
(white area). A global change in bacterial growth dynamics was observed
between dietary regimens (**Mann-Whitney P < 0.005, ***P < 0.001).
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calculated both the mean and the median of
the PTRs of all the bacteria present. This global
measure correlated with fasting blood glucose
and HbA1c% levels and with the occurrence of
Crohn’s disease and type II diabetes, indicating
that global microbiome growth dynamics also
associate with disease (Fig. 4).
A preliminary analysis of 40 samples from

the Prospective Registry in Inflammatory Bowel
Disease (IBD) Study at Massachusetts General
Hospital (MGH) (PRISM) cohort (23) showed
that only four bacteria passed our stringent pipe-
line filters for PTR calculation in more than
half of the samples. Notwithstanding, Eggerthella
lenta presented significantly different PTRs be-
tween patients with active Crohn’s disease and
patients in remission (FDR-corrected Mann-
Whitney P < 0.1). Neither the abundance of E.
lenta nor of the other three species differed
between active and quiescent Crohn’s patients,

highlighting the fact that PTRs reflect an inde-
pendent feature of the effect of the gut micro-
biome on its host.
Overall, we present a new type of metagenomic

data analysis that provides an accurate quantita-
tive estimate of the growth dynamics of the micro-
biota fromasingle snapshot sample.Theseestimates
have clinical relevance and correspond to changes
in absolute abundances, which aremasked by and
unobtainable through relative abundances.
Using PTRs to “fish out” microbial kinetic be-

havior in a complexmicrobiomepopulation could
extend our understanding of how flexibly the mi-
crobiota responds functionally to environmental
signals. We may be able to identify active “driv-
er” and “modulator” species, distinguish them
from bystander commensal species, and pinpoint
disease-causing or disease-modulating microbes
that contribute to multifactorial diseases whose
activities may be masked by other bacteria. Fur-

thermore, our method may be able to detect,
follow, and assess therapeutic responsiveness of
pathogenic or probiotic species introduced into
the microbiome.
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Farm dust and endotoxin protect
against allergy through A20 induction
in lung epithelial cells
Martijn J. Schuijs,1,2* Monique A. Willart,1,2* Karl Vergote,1,2 Delphine Gras,3

Kim Deswarte,1,2 Markus J. Ege,4 Filipe Branco Madeira,1,2 Rudi Beyaert,5,6

Geert van Loo,5,6 Franz Bracher,7 Erika von Mutius,4 Pascal Chanez,3

Bart N. Lambrecht,1,2,8†‡ Hamida Hammad1,2†‡

Growing up on a dairy farm protects children from allergy, hay fever, and asthma. Amechanism
linking exposure to this endotoxin (bacterial lipopolysaccharide)–rich environment with
protection has remained elusive. Here we show that chronic exposure to low-dose endotoxin or
farm dust protects mice from developing house dust mite (HDM)–induced asthma. Endotoxin
reduced epithelial cell cytokines that activate dendritic cells (DCs), thus suppressing type 2
immunity to HDMs. Loss of the ubiquitin-modifying enzyme A20 in lung epithelium abolished
the protective effect. A single-nucleotide polymorphism in the gene encoding A20 was
associated with allergy and asthma risk in children growing up on farms.Thus, the farming
environment protects from allergy by modifying the communication between barrier epithelial
cells and DCs through A20 induction.

A
llergic asthma is characterizedby eosinophil-
ic airway inflammation, goblet cell metapla-
sia, andbronchial hyperreactivity (BHR) and
is controlledby innate andadaptive immune
responses to inhaled allergens such as house

dust mites (HDMs), pollen, and fungal spores that
signal via pattern recognition receptors (PRRs)
on barrier epithelial cells (ECs) and dendritic cells
(DCs) (1, 2). In children, allergic sensitization and
asthma are strongly influenced by genes and the
environment. A dairy farm is one of the strongest
protective environments (3–6). On farms, there is
high-level exposure to endotoxin [lipopolysaccha-
ride (LPS)], a cell wall component of Gram-negative
bacteria. The protective effect that high levels of en-
vironmental endotoxin demonstrate against allergy
has also been noticed in nonfarming households,
where exposure was measured in dust collected
frommattresses or kitchen floors (7–9). Protection
in these environments is influencedby genetic poly-
morphisms in key PRRs that recognize endotoxin
(10). A clearmechanism encompassing the complex
interactions between a protective environment, ge-
netics, and the immune response to allergens has
been lacking.

To address whether exposure to environmental
endotoxin and protection from allergy are caus-
ally related, we exposed mice every other day for
2weeks to a low dose (100 ng) of LPS or to control
phosphate-buffered saline (PBS) beforeHDMsen-
sitization and challenge (Fig. 1A) (see supplemen-
tarymaterials andmethods). Sham-protectedmice
exhibited strong airway eosinophilia and lympho-
cytosis (Fig. 1B), T helper 2 (TH2)–dependentHDM
allergen–specific immunoglobulinE (IgE) (Fig. 1C),
andBHR tomethacholine (Fig. 1D).However,mice
pretreated with LPS failed to develop all of these
canonical asthma features. Protective LPS led to
reduced production of the type 2 cytokines inter-
leukin (IL)–5 and IL-13 in mediastinal lymph
node (MLN) cells (Fig. 1E), without a shift to TH1-
or TH17-associated cytokines or to TH1-dependent
serum immunoglobulin G2a (IgG2a) antibodies
(Fig. 1, C andE). All of the key asthma featureswere
also suppressed when a single high dose (1 mg) of
LPS was given as a preventive regimen 14 days be-
fore sensitization (fig. S1, A to E), as well as
when chronic low-dose LPS was given before and
throughout the entire HDM sensitization and
challenge period (fig. S1, F to I).
Sensitization to HDMs depends on various DC

subsets that migrate to theMLNs to prime CD4 T
cell responses (11, 12). When PBS-treated control
mice were exposed to a single dose of HDM,
CD11b+ conventionalDCs (cDCs), CD103+ cDCs, and
monocyte-derived DCs (moDCs) were recruited to
the lungs and MLNs (Fig. 2A). In mice receiving
preventive LPS, there was less HDM-induced
recruitment of both subsets of cDCs, whereas
moDCs were unaffected (Fig. 2A). cDCs that mi-
grate to the MLN cells induce TH2 polarization
in HDM-reactive naïve T cells (12). To study the
primary immune response to HDMs, we adop-
tively transferred CD4+ HDM-specific 1-DER
T cells [that express a transgenic T cell receptor
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Growth dynamics of gut microbiota in health and disease inferred from single metagenomic
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and in human fecal samples.
irritable bowel disease, and what happens when a host's diet changes. Results were consistent in chemostats, in mice, 
could spot the difference between virulent and avirulent strains, population diurnal oscillations, species that are growing in
number at the terminus to detect the actively growing species in a microbiome (see the Perspective by Segre). They 

 use the ratio of copy number at the origin to the copyet al.growth, copies of the genome accumulate at the origin. Korem 
pattern is predictive of growth because bacterial genomes are circular, with a single origin of replication. So during 

The pattern of sequencing read coverage of bacteria in metagenomic samples reflects the growth rate. This
Estimating bacterial growth dynamics

ARTICLE TOOLS http://science.sciencemag.org/content/349/6252/1101

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2015/07/29/science.aac4812.DC1

CONTENT
RELATED 

http://stm.sciencemag.org/content/scitransmed/7/276/276ra24.full
http://stm.sciencemag.org/content/scitransmed/7/271/271ps1.full
http://stm.sciencemag.org/content/scitransmed/6/263/263ra158.full
http://stm.sciencemag.org/content/scitransmed/7/295/295ed8.full
http://science.sciencemag.org/content/sci/349/6252/1058.full

REFERENCES

http://science.sciencemag.org/content/349/6252/1101#BIBL
This article cites 35 articles, 4 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title 
Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive 

(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

on June 20, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/content/349/6252/1101
http://science.sciencemag.org/content/suppl/2015/07/29/science.aac4812.DC1
http://science.sciencemag.org/content/sci/349/6252/1058.full
http://stm.sciencemag.org/content/scitransmed/7/295/295ed8.full
http://stm.sciencemag.org/content/scitransmed/6/263/263ra158.full
http://stm.sciencemag.org/content/scitransmed/7/271/271ps1.full
http://stm.sciencemag.org/content/scitransmed/7/276/276ra24.full
http://science.sciencemag.org/content/349/6252/1101#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

