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METABOLIC GENOMICS

Resource conservation manifests in the genetic code
Liat Shenhav1,2* and David Zeevi1*†

Nutrient limitation drives competition for resources across organisms. However, much is unknown about
how selective pressures resulting from nutrient limitation shape microbial coding sequences. Here,
we study this “resource-driven selection” by using metagenomic and single-cell data of marine microbes,
alongside environmental measurements. We show that a significant portion of the selection exerted
on microbes is explained by the environment and is associated with nitrogen availability. Notably, this
resource conservation optimization is encoded in the structure of the standard genetic code, providing
robustness against mutations that increase carbon and nitrogen incorporation into protein sequences.
This robustness generalizes to codon choices from multiple taxa across all domains of life, including
the human genome.

N
itrogen and carbon are major limiting
factors in many ecosystems, with recent
studies linking their availability to core
genomic properties (1, 2). In low-nitrogen
environments, there is a strong A+T bias

in nucleotide sequences, smaller genome sizes,
and a lower incorporation of nitrogen-rich side
chains into proteins (3–5). Opposite trends
have been shown for carbon limitation (2),
and indeed, nitrogen and carbon concentra-
tions are typically inversely correlated (6). Thus,
recent studies propose a purifying selective
pressure associated with resource conserva-
tion (2, 3, 5), which we term “resource-driven
selection.”
Resource-driven selection postulates that

mutations resulting in excess incorporation of
nutrients such as nitrogen and carbon are dis-
favored. However, not all mutations have the
same effect on protein sequences, because of
constraints imposed by the pattern of codon
assignments in the standard genetic code (here-
inafter, the structure of the genetic code). The
genetic code, common to virtually all of life on
earth, can mitigate the effects of mistransla-
tion errors and point mutations (7), specifical-
ly those leading to radical changes in amino
acids. This error minimization is prominent
among theories regarding the origin of the ge-
netic code (8–11), which propose that the code
evolved through selection to minimize poten-
tial adverse effects of mutations on protein
structure and function (12–14). To quantify
code optimality, some theories provide struc-
turally informed amino acid metrics on the
basis of hydropathy and stereochemistry [e.g.,
the polar requirement (PR) scale (11) and hydro-
pathy index (15)]. To our knowledge, an opti-

mization of nutrient conservation in the genetic
code has not been studied thus far.

Results
Widespread purifying selection in the
marine environment

To comprehensively characterize how coding
sequences of marine microbes are affected by
resource availability, we first downloaded 746
samples from the Tara Oceans consortium (n =
136) (16), bioGEOTRACES (n = 480) (17), and
the Hawaii Ocean time series (HOT; n = 68)
and Bermuda Atlantic time series (BATS; n =
62) (17) (fig. S1A) (18). We then devised a com-
putational pipeline that calculates selection
metrics from these marine metagenomic sam-
ples (fig. S1B). We aligned reads to the Ocean
MicrobiomeReferenceGeneCatalog (OM-RGC)
(16), a database of genes from marine envi-

ronments that is accompanied by functional
information. We searched for single-nucleotide
polymorphisms (SNPs) in genes that had suf-
ficient high-quality coverage (fig. S1B) (18). Over-
all, we found 71,921,864 high-confidence SNPs
(18), in a total of 1,590,843 genes.
To quantify purifying selection on different

gene functions, we annotated genes from the
OM-RGC database using either KEGG orthol-
ogy groups (KOs) (19) or eggNOG orthologous
groups (OGs) (18, 20). Using called SNPs, we
calculated for each orthologous group and
in each sample the ratio of nonsynonymous
polymorphisms to synonymous polymorphisms
(pN/pS) (18). Across all samples, we found pN/
pS ratios to be close to zerowith an average of
0.074 in eggNOGOGs [confidence interval (CI),
0.072 to 0.075] (fig. S1C) and 0.079 in KEGG
KOs (CI, 0.077 to 0.080) (fig. S1D), indicating
purifying selection across the marine environ-
ment. To corroborate the validity of calculating
selection metrics from metagenomic samples,
we compared nonsynonymous mutations lead-
ing to “conservative” amino acid substitutions
with those leading to “radical” substitutions and
found conservative mutations to be signifi-
cantly more common (permutation test, P <
0.0001) (21).

Resource-driven selection apparent across
marine microbial genes

On the basis of recent studies (2–5), we hy-
pothesized that nutrient availability is a cen-
tral driver of this purifying selection. We thus
considered environmentalmeasurements taken
alongside each sample, including depth, water
temperature, salinity, and concentrations of
nitrate, nitrite, oxygen, phosphate, and silicate
(fig. S2, A to H) (18).
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Fig. 1. Analysis of pN/pS ratios reveals resource-driven selection. (A) Variance of eggNOG OG pN/pS
explained by the environment in the LMM (red) (18) compared with the same data with shuffled labels
(blue). The box plot lines show median values, the boxes show interquartile ranges, and whiskers show
5th and 95th percentiles. (B) Similar data presentation as in (A), for KEGG KO pN/pS. P values were
determined with the Wilcoxon signed-rank test. (C) Box plot of variance in pN/pS explained by the
environment in the LMM in the 100 lowest (left) and 100 highest (right) expressed KEGG KOs. P values
were determined with the Mann-Whitney U test.
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These measurements presented consistent
correlation patterns with the pN/pS ratios of
many KEGG and eggNOG orthologs (fig. S3).
However, as they are also correlated with each
other (fig. S2I), we cannot accurately estimate
their individual effects. We therefore used a
linear mixed model (LMM) with variance com-
ponents (18) to estimate the fraction of var-
iance in pN/pS ratios (dependent variable) that
is explained by the environment (random ef-
fect), while controlling for the correlation struc-
ture between the environmental parameters.
We term the fraction of variance in pN/pS
ratios explained by resource availability the
environmental explained variance (EEV) (18).
Across both KEGG and eggNOG orthologs, a
significant fraction of the variance in pN/pS
can be attributed to the environment (Mann-
Whitney U test, P < 10−16) (Fig. 1, A and B, and
fig. S4, A and B), with nitrate being more
strongly correlated with pN/pS ratios than any
other environmental parameter (Kolmogorov-
Smirnov test, P < 10−30 for all comparisons)
(fig. S5). Examining typical DNA mutations
and amino acid substitutions in nitrate-rich
versus nitrate-poor environments, we found
that environmental nitrate is associated with
specific changes to both DNA and protein se-
quences, favoring lower nitrogen incorpora-
tion into protein sequences when nitrate is
scarce (21).
This association between environmentalmea-

surements and the magnitude of purifying se-
lection is significant even after controlling for
potential confounders such as time or effective
population size (Mann-WhitneyU test,P< 10−16)

(fig. S4, C and D) (21), as well as in specific
environmental niches (Mann-Whitney U test,
P < 10−20) (fig. S6) (21). Additionally, these re-
sults were replicated using benchmarking data
of assembled genomes fromuncultivated single
cells from three dominant lineages of the sur-
faceocean (SAR-11, SAR-86, andProchlorococcus)
(fig. S4, E to G) (21, 22). These validations dem-
onstrated that the association between selec-
tive pressure and environmental conditions is
robust to both data type and selection metric
and is not confounded by population prop-
erties and clade-specific metabolism.

Environmental association is stronger in
resource-consuming genes

With nitrate being the environmental factor
most strongly associated with pN/pS, we and
others hypothesize that mutations that in-
crease the nitrogen requirements of cells are
selected against, especially in nitrogen-limited
conditions (3, 5, 23). This implies stronger
purifying selection in highly expressed genes
(3, 4), where one DNAmutation could trans-
late to thousands of proteins, each consuming
more resources (illustrated in fig. S7). We thus
used an expression dataset for marine micro-
bial genes (24) to rank KEGG KOs by their
mean expression (18). The 100 most highly
expressed KEGG KOs had a significantly
higher EEV than the 100 least-expressed ones
(Mann-Whitney U test, P < 10−9) (Fig. 1C and
fig. S8). We replicated these results using
single-cell data pertaining to specific bacterio-
plankton lineages (Mann-Whitney U test, P <
10−7). Additionally, we found that genes encod-

ing extracellular proteins, i.e., for resources ex-
creted from the cell that cannot be recycled,
had significantly higher EEV than other gene
groups (Mann-WhitneyU test,P<0.05) (fig. S9)
(18). This higher EEV for resource-consuming
genes further strengthens our results regarding
the breadth of resource-driven selection.

Resource conservation as an optimization
mechanism in the genetic code

We observed selection against DNAmutations
which result in excess incorporation of nutri-
ents, such as nitrogen and carbon, into pro-
teins. However, mutations are constrained by
the structure of the genetic code, which mini-
mizes the impact of pointmutations on protein
structure and function (12–14). We hypothe-
sized that the genetic code also minimizes the
impact of point mutations on nutrient incor-
poration into proteins. Specifically, the genetic
code acts as a buffer between DNA, where mu-
tations occur, and proteins, where resource-
driven selection is exerted.
We thus defined, for each element e (e.g.,

carbon, nitrogen), a function quantifying the
cost of a single mutation as the added num-
ber of amino acid atoms resulting from it.
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Fig. 3. Optimization for carbon and nitrogen is not
confounded by hydropathy. (A) Hydropathy of
different amino acids, depicted along their positions
in the standard genetic code. (B, top) Histograms of
ERMCs in 1 million random permutations of the
genetic code for hydropathy. (Bottom) Histograms of
ERMCs for nitrogen (left) and carbon (right) for the
subset of hypothetical genetic codes with ERMCs
lower than the standard genetic code for hydropathy.
P values were determined with a permutation test.

Fig. 2. Resource conservation is facilitated by the genetic code. (A) Nitrogen (left), carbon (center), and
oxygen (right) content of different amino acids, depicted along with their positions in the standard genetic
code. (B) Histograms of the ERMC in 1 million random permutations of the genetic code for nitrogen (blue),
carbon (black), and oxygen (red). The black and yellow bars mark the ERMCs of the standard genetic
code for each of the elements. P values were determined with a permutation test.
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For example, a missense mutation from co-
don CCA to CGA results in an amino acid
substitution from proline to arginine, with an
increase of one carbon and three nitrogen
atoms, setting the nitrogen cost of such a mu-
tation to 3 and the carbon cost to 1 (Fig. 2A).
We calculated, for nitrogen, carbon, and

oxygen, the expected random mutation cost
(ERMC) for the standard genetic code. This
calculation considered the abundance of co-
dons, calculated from all marine samples;
the transition probability between codons,
estimated using the abundance of all single-
nucleotide mutations (e.g., for the mutation
changing GCA to CCA, we use the abundance
of G-to-C transversions); and the cost func-
tion, i.e., the number of atoms of each element
added after mutation (18). For the standard
genetic code, and also for codon abundances
and mutation rates calculated for marine mi-
crobes, we report ERMC values of 0.44, 0.16,
and 0.16 for carbon, nitrogen, and oxygen,
respectively, corresponding to an average in-
crease of this number of atoms per random
mutation (Fig. 2B).
To check if the standard genetic code, along

with codon abundances and mutation rates,
is indeed robust to resource-consuming muta-
tions, we compared it with other hypothetical
codes. We simulated alternative genetic codes
by randomizing the first and second position
in all codons 1 million times, to create a null
distribution of ERMC (18). We found that the
standard genetic code, common to most life
forms, is parsimonious in terms of carbon and
nitrogen utilization, given a random mutation.
This is marked by a significantly low ERMC
for nitrogen (ERMCN P = 0.014) (Fig. 2B) and
carbon (ERMCC P = 0.012), but not oxygen
(ERMCO P = 0.87).
We compared the extent of robustness against

addition of carbon or nitrogen to protein se-
quences with the robustness against amino
acid changes that may affect protein structure
and function, as extensively reported (12–14).
We calculated ERMC for changes in hydropa-
thy (15) and polar requirement (PR) (11), both
of which are structurally informed amino acid
properties used to determine code error mini-
mization (18). We found that these optimiza-
tionmechanisms are of a similarmagnitude of
significance as those for nitrogen and carbon
conservation (ERMCPR P = 0.014; ERMChyd

P = 0.015) (fig. S10, C and D) (18).
We then devised a hierarchical model to

examine the subset of genetic codes (out of
1 million hypothetical codes tested) that have
a lower ERMC than the standard code for PR
or hydropathy, and we tested whether this
subset is also optimized for nitrogen or car-
bon (18). If nutrient optimization is separate
from structural optimization, we would expect
the standard code to be optimized for car-
bon and nitrogen, even in comparisons with

this subset, with significantly lower ERMCN and
ERMCC values. Of the 15,223 hypothetical codes
that have a hydropathy ERMC (ERMChyd)
lower than the standard code, only 270 have a
lower ERMCN (P = 0.019) (Fig. 3 and fig. S10E)

and only 249 have a lower ERMCC (P = 0.021)
(Fig. 3 and fig. S10E). Similarly, of the 13,729
hypothetical codes that have an ERMCPR lower
than the standard code, only 83 have a lower
ERMCN (P = 0.006) (fig. S10F), and only 442
have a lower ERMCC (P = 0.037) (fig. S10F).
This is in contrast with the observed overlap
between hydropathy and PR: out of the 15,223
hypothetical codes that have an ERMChyd lower
than the standard code, 6736 have a lower
ERMCPR (P = 0.44) (fig. S10E). These results
indicate that the detected carbon and nitro-
gen optimization is not confounded by pre-
viously reported optimization properties such
as hydropathy and PR.
Remarkably, only 128 out of 1 million ran-

domized genetic codes were better than the
standard code in conservation of nitrogen and
carbon together (ERMCCN P = 1.3 ×10−4) (fig.
S10, G and H). This number is significantly
smaller than the number of hypothetical codes
expected to have both a lower ERMCC and
ERMCN (chi-square test of independence, P =
0.0013) (table S1). This is possibly driven by a
small overlap between the positions of high-
nitrogen and high-carbon amino acids. This
property of the standard code potentially en-
ables concurrent optimization for both carbon
and nitrogen. These results highlight a new
optimization principle of the genetic code that
is of similar magnitude—and independent of—
previously proposed principles.

The genetic code facilitates resource
conservation across kingdoms

To show that the resource robustness of the
genetic code was not limited to our dataset,
we calculated the ERMC of 187 strains of ma-
rine microbes in the genera Prochlorococcus
and Synechococcus. We computed codon abun-
dances and mutation rates using published
protein-coding sequences (1) and the accepted
transition:transversion rate of 2:1 (18, 25). We
identified significant conservation of carbon,
nitrogen, and both elements combined (ERMCC
mean, P = 0.013 and P = 0.020; ERMCN mean,
P = 0.049 and P = 0.032; ERMCCN P = 0.0004,
P = 0.0007 for Prochlorococcus and Synechococ-
cus, respectively) (fig. S11A).
To explore whether this nutrient conserva-

tion optimization in the genetic code extends
across organisms, we performed a similar cal-
culation using codon abundances from 39 or-
ganisms across all domains of life, including
all human protein-coding sequences and a
range of transition:transversion rates (18). Sim-
ilarly to marine microbes, we found that the
genetic code is optimized in terms of resource
utilization for all tested organisms, and it is
marked by a significantly lower ERMC for ni-
trogen and carbon combined, across all tran-
sition:transversion rates (P < 0.01) (Fig. 4).
Moreover, we found significant optimization
even in the theoretical case where all codon
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Fig. 4. The genetic code is optimized for
resource conservation across organisms. Heat-
map of ERMCCN P values across 39 organisms
and 11 transition:transversion rates. Organisms in
each group are ordered by the GC content of their
coding sequences.
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abundances are the same (P < 0.01) (fig. S11B).
The codon abundances of a great majority of
organisms also demonstrate significantly lower
ERMC values for nitrogen (fig. S11C) and
carbon (fig. S11D), for a wide range of tran-
sition:transversion rates. These results indi-
cate that resource optimization in the genetic
code transcends taxonomy, codon choices,
and mutation rates.

Resource conservation may bias codon usage

We examined all amino acids encoded by co-
dons with adenine in the first position, focus-
ing on codonusage of the amino acid threonine.
We note that a C-to-G transversion in the sec-
ond position for codons ACT and ACC yields
serine (AGT and AGC, respectively), but the
samemutation for codons ACA and ACG yields
arginine (AGA and AGG) (Fig. 5A, inset). Argi-
nine has higher carbon and nitrogen contents
than serine. We thus hypothesized that for a
cell to conserve nutrients in case of a random
mutation, codons ACT and ACC should have a
higher abundance than codons ACA and ACG,
respectively, given a known genomicGC bias.We
examined codon usage in 187 Prochlorococcus
and Synechococcus strains and found signifi-
cantly higher use of ACT than of ACA (Wilcoxon
signed-rank test, P < 10−20) (Fig. 5A) and signif-
icantly higheruse ofACC thanofACG (Wilcoxon
signed-rank test, P < 10−20) (Fig. 5A). Similarly,
the isoleucine codon ATT had a higher abun-
dance than ATA (Wilcoxon signed-rank test,
P < 10−20) (Fig. 5A). These results point to re-
source conservation as a central driving force
in guiding codon usage and thereby affecting
not only protein sequence but also cellular
translation efficiency.

Structural principles drive optimization in the
genetic code
Codons of the nitrogen-rich amino acids his-
tidine, glutamine, asparagine, lysine, and argi-
nine span only two nucleotides in their first
position and two in their second position. We
define this organization to be a “square” ar-
rangement and hypothesize that it amplifies
nitrogen conservation (Fig. 5B) (18). Specifi-
cally, in the square arrangement, some codons
require at least two mutations to increase the
number of nitrogen atoms (e.g., those coding
for alanine and valine). This is in contrast to
other hypothetical arrangements, including
a “diagonal” one in which nitrogen-rich amino
acid codons span all possible nucleotides in
the first and second positions (Fig. 5B) (18).
On the basis of these results, it seems that
the diagonal arrangement would be nutrient-
wasteful, as a single mutation in the first or
second codon position could increase the
nitrogen content of a protein. We generated
10,000 hypothetical codes, with 220 arrange-
ments embodying a square structure and 127
embodying a diagonal one. Compared with all
other possible arrangements, the square ar-
rangements present a significantly lower ERMCN,
whereas diagonal arrangements exhibit a sig-
nificantly higher ERMCN (Mann-Whitney
U test, P < 10−10 for both) (Fig. 5B). This indi-
cates that resource optimization in the stan-
dard code is driven by structural principles,
perhaps underlying the optimization observed
across kingdoms.

Discussion

Here, we characterized and quantified the se-
lective forces exerted by nutrient availability

on protein-coding genes in marine environ-
ments. We provide a data-driven, population-
level perspective and show that resource-driven
selection is a ubiquitous force.We further show
that a significant portion of DNA mutations
may not result in increased nutrient incor-
poration into protein sequences, owing to
the pattern of codon assignments in the ge-
netic code.
In light of these results, we hypothesize that

resource-driven selection is equally exerted on
all parts of the protein-coding gene. This sets it
apart from selection tomaintain the structural
integrity of a protein or the function of its ac-
tive site, both of which occur predominantly in
structurally important regions (26). Thus, ac-
counting for resource-driven selection may
improve the identification of alternative trans-
lation start sites, alternatively spliced introns,
or readthrough stop codons, as intermittently
translated regions of the proteinmay be under
weaker resource-driven selection than are con-
stitutively translated ones (27).
Our results showing that the genetic code

optimizes nutrient conservation are in line
with theories sporting an early fixation of an
optimal genetic code, suggesting selection for
error minimization (10, 28). Nevertheless, the
genetic code is also near-immutable, as evi-
dent in heterotrophic eukaryotes, which as
net nitrogen producers still harbor a nitrogen-
conservative code. This implies that the ge-
netic code can be viewed as a buffer between
the evolutionary forces of mutation and selec-
tion, the former occurring in DNA sequences
and the latter predominantly in proteins. In
the case of nutrient conservation, many DNA
mutations do not result in the incorporation
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Fig. 5. Structural properties and codon usage bias underlying optimality in
the genetic code. (A) Violin plot of codon usage among 187 species of
Prochlorococcus and Synechococcus, showing significant preference of threonine
codons ACT and ACC compared with ACA and ACG and of isoleucine codon ATT
compared with ACA. P values were determined with the Wilcoxon signed-rank

test. (B) ERMCN values for square arrangements (left) and diagonal arrange-
ments (right) (18), compared with all other arrangements (center) out of 10,000
hypothetical arrangements. The box plot lines show median values, the boxes
show interquartile ranges, and whiskers show 5th and 95th percentiles. P values
were determined with the Mann-Whitney U test.
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of additional nutrients into proteins and are
thus not selected against, which may allow
more “freedom” for fitness gradients to explore
the mutation space.
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